Institution of Mechanical Engineers

Vacuum cooling solutions to tackle some big global issues to reduce food waste and water scarcity. ICL  manufacture vacuum cooler machines for the agricultural market, vacuum coolers van be used to cool many perishable produce. The use of a Vacuum cooler has been a preferred method of cooling fresh produce for many farmers for decades.

Reducing Food and Water waste

Vacuum Cooling machines benefits are to extend the shelf life of fresh produce by rapidly removing the field heat. The use of a vacuum cooler will not only extend the shelf life of the product but will also bring the product temperature down to its optimum required temperature before it enters the cold chain. Inevitably using a vacuum cooler will reduce post harvest loss plus will also reduce the water wasted with post harvest loss.

Water Scarcity

Half of the countries of the world facing water insecurity issues and outright shortages by 2025.
It is estimated that in the world today, about 2.8 billion people are subject to conditions of moderate to severe water scarcity for at least one month of each year. Many of these live in the poor rural communities of developing economies such as India, China, Bangladesh, Mexico and those in Sub-Saharan Africa.

According to the WHO and UNICEF, 844 million people on the planet, one in nine, do not have clean water close to their homes, leading to health issues through inadequate hydration, poor sanitation and personal hygiene, as well as hunger and malnutrition due to crop failure and animal mortality.

Climate Change

As weather patterns across the globe alter in response to climate change, water scarcity is projected to increase in frequency and geographical extent, contributing to half of the countries of the world facing water insecurity issues and outright shortages by 2025. Clearly, any engineered solutions that can sustainably help mitigate the impact of water scarcity are crucial to the lives of billions of people both today and in the future.


By way of one possible solution, in London there is a desalination plant commissioned in 2012 that is capable of producing 150 million litres of water per day – enough for 400,000 households. Fortunately though it is yet to be used, as, for the moment, existing water supplies continue to cope. Desalination however always involves big centralised plants located close to areas of high population density. For example, in Israel, who are the global leaders in desalination, the world’s largest facility is currently being built to supply up to 624 million litres of clean water per day for about 1.5 million people located in the surrounding area. Despite the innovative advances made by Israeli engineers to improve the efficiency of the process, the technology is energy intensive and expensive to both build and run. To meet the needs of the rural poor what is required is local, small scale, more agile engineered interventions, that offer energy efficient, affordable ways to provide water for use in drinking, sanitation, hygiene and agriculture.

Smaller scale technologies

As well as large-scale state-of-the-art desalination plants, Israeli engineers have developed an efficient, cost-effective, smaller scale technology that can provide up to 6,000 litres of fresh drinking water every day from moisture present in humid air, benchmarked at 26.7C and 60% relative humidity. This is sufficient to supply a small sized rural community in a developing country, where typically water consumption is as low as 20 litres per day for the average person. The company these engineers work for, Water-Gen Ltd, has also made available a more lightweight mobile version for easy transport that can deliver up to 650 litres a day. Both machines do however require either grid electricity or diesel gen-set supplied power to operate. In a world where 1.2 billion, mostly rural based, people have no access to electricity the provision of off-grid solutions is essential. This is particularly important in the case of developing economies, where diesel gen-sets are an unsustainable solution due to high costs, unreliable fuel sourcing and fuel price volatility.

One such solution developed by engineers at US company SunToWater Technologies LLC, is a highly efficient, innovative, standalone solar powered dehumidifier unit capable of producing between 150-380 litres of water per day from air with a relative humidity as low as 14%. In this off-grid commercialised application, during a ‘recharging’ phase, air is blown over a salty material which absorbs up to six times its weight in water. In the ‘discharge’ phase, this is then extracted through the use of solar sourced heat and a condenser loop. In another, much simpler back-to-basics approach, Peruvian entrepreneur Abel Cruz recently set up 60 ‘fog catchers’ in the Andes around Lima to deliver water to the poor for crop irrigation and washing. Each low-cost unit delivers 50-100 litres of water per day. They are composed of a nylon net to collect moisture droplets from the air and gutters and pipes to transport the water to a storage vessel for onward distribution to users.

vacuum cooling

vacuum cooling

Inviro Choice Ltd – Vacuum Cooling specialists

Engineers working for UK companies are also coming up with a range of similarly innovative ways to produce water for poor rural communities suffering water scarcity. One such company, Inviro Choice Ltd, is however going a step further and ingeniously combining water production with water waste prevention.

Many rural communities in the world that are subject to the detrimental impacts of water scarcity are dependent for their livelihoods on food production from smallholder farming, in which water plays an important part. However, the tragedy for these communities is that in many cases as much as 50% of the food they produce is lost postharvest due to spoilage, so much of this water is wasted unnecessarily. It has been estimated that about 25% of the water used in food production globally is associated with food produce that ends up as wastage. Reducing postharvest food loss is essential to helping prevent precious water resources being wasted.

Reducing post harvest loss and water scarcity

Cooling perishable produce such as fruit and vegetables to an optimum temperature immediately upon harvest is crucial in ensuring that food entering the supply chain has the best chance of maintaining shelf life for as long as possible. This is particularly important in the case of tropical and sub-tropical produce where ambient temperatures are high and, for example, a one hour delay in removing field heat from produce harvested at about 35°C can lead to a one day reduction in shelf life.

Vacuum Cooling

Engineers working at the Liverpool-based SME, have developed a vacuum cooler  which has integrated solar PV and energy storage to support full off-grid operation, but importantly have also redesigned the vacuum cooling process to enable recycling of the water produced by the cooling cycle. Standard operation of the system results in the removal of up to 2.5% of the moisture contained in the food produce being cooled (moisture removal beyond this limit is detrimental to the integrity of the product) and by simply capturing this it is possible to effectively recycle a portion of the water used in growing the produce and make it available for other uses.

What is clear is that there are many engineered ways to respond to our growing water shortages. Dehumidifiers, food chillers, fog catchers and desalination are but four of them described here. There will no doubt be more as we strive to continue to be “improving the world through engineering”. What will link them all for sure is that combined with efforts to reduce our demand for clean water, we will solve the problem one drop at a time.

Vacuum Cooling

Dr Tim Fox


Dr Tim Fox Institution of Mechanical Engineers

CEng CEnv FIMechE FRSA, is the Institution’s Head of Energy and Environment. His primary focus is providing thought leadership on how to sustainably meet the major challenges facing human populations in 21st Century, namely food, water, energy and shelter provision in the context of increasing environmental risk and depleting natural resources.

Vacuum cooling – Wikipedia 

Vacuum Cooling is known to be the most rapid cooling technique[citation needed] for any porousproduct which has free water and works on the principle of evaporative cooling. Vacuum cooling is generally used for cooling food products having a high water content and large porosities, due to its efficacy in losing water from both within and outside the products. This is the most widely used technique for rapid cooling of food product which has been proven to be one of the most efficient and economical method of cooling and storage of vegetables, fruits, flowers & more.[citation needed]

Vacuum Cooling cooling technology not only strongly improves the product quality, but also increases the shelf life of product and at the same time it reduces the cooling costs compared to the conventional cooling method available.[citation needed]


Write a Comment

Fields with * are required